In this study, network pharmacology and molecular docking technology were used to explore the molecular mechanisms of the Duhuo Jisheng decoction in the treatment of osteoarthritis (OA). The chemical composition of the prescriptions was obtained from the traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) database and the retrieved literature. Targets for the active ingredients were obtained using TCMSP and the Swiss Target Prediction Database. Disease targets were obtained from GeneCards and DisGeNET databases. The online tool, Venny, was used to obtain common targets for drugs and diseases. Protein-protein interactions (PPI) between common targets were analyzed using the search tool for the retrieval of interacting genes/proteins (STRING) database. Common targets were analyzed for gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment using the database for annotation, visualization and integrated discovery (DAVID) database. Molecular docking of the first 10 targets and first 10 components was verified using AutoDock Tools software, and the docking diagram was visualized using PyMOL software. After screening, 210 chemical components of the Duhuo Jisheng decoction (DHJSD) were identified. The 253 common targets of drugs and diseases were combined by eliminating repeat values. Based on PPI network analysis, the top ten targets were SRC, STAT3, MAPK3, MAPK1, RELA, PIK3R1, HSP90AA1, TP53, EP300, and AKT1. KEGG analysis showed that DHJSD could regulate the HIF-1, PI3K-Akt, and JAK-STAT signaling pathways. The biological processes involved include inflammatory reactions, the negative regulation of apoptosis, and the positive regulation of cell proliferation. Molecular docking results showed that all targets, except the RELA protein, showed good binding to the compounds, indicating that the 10 components might exert therapeutic effects by binding to the above targets. DHJSD can treat OA by regulating the HIF-1, PI3K-Akt, and JAK-STAT signaling pathways. The proteins involved were SRC, STAT3, MAPK3, MAPK1, and PIK3R1. In this study, network pharmacology was used to predict the mechanism of DHJSD in OA treatment, which was verified by molecular docking to provide experimental research ideas and scientific basis for OA treatment.