Software Defined Networking (SDN) has proved itself to be a backbone in the new network design and is quickly becoming an industry standard. The idea of separation of control plane and data plane is the key concept behind SDN. SDN not only allows us to program and monitor our networks but it also helps in mitigating some key network problems. Distributed denial of service (DDoS) attack is among them. In this paper we propose a collaborative DDoS attack mitigation scheme using SDN. We design a secure controller-to-controller (C-to-C) protocol that allows SDN-controllers lying in different autonomous systems (AS) to securely communicate and transfer attack information with each other. This enables efficient notification along the path of an ongoing attack and effective filtering of traffic near the source of attack, thus saving valuable time and network resources. We also introduced three different deployment approaches i.e., linear, central and mesh in our testbed. Based on the experimental results we demonstrate that our SDN based collaborative scheme is fast and reliable in efficiently mitigating DDoS attacks in real time with very small computational footprints. Thing (IoT) devices (such as printers, cameras, home routers and baby monitors) were used to generate a DDoS attack involving malicious domain name system (DNS) lookup requests from tens of millions of IP addresses [4]. This attack is considered the largest of its kind in history with an unprecedented rate of 1.2 Tbps. The main target of the attack was the servers of Dyn Inc., a company that controls much of the Internet's DNS infrastructure [5]. Study of recent attacks reveal that with little effort, next generation attack tools would be able to enact DDoS attacks that are thousand times stronger than the ones we see today [6]. A popular defense practice against DDoS is to deploy detection and response mechanisms at the destination hosts due to higher accuracy and cheaper cost. On the downside, destination based mechanisms alone cannot mitigate attack on the paths to the victim and waste resources. This calls for an efficient mitigation strategy to ease out network resources along the transit path of an attack from source to victim. SDN bring us a new approach to deal with DDoS attacks [7][8][9]. The separation of control and data plane in SDN allows us to write the control logic and instruct the forwarding plane to behave accordingly. This programmability gives us more control of the network traffic which was Future Internet 2018, 10, 23 2 of 18 not possible before the advent of SDN. In [10], Giotis et al. proposed a DDoS mitigation scheme across multiple SDN domains or networks (Domain(s) and Network(s) are used interchangeably throughout this paper). The mitigation process starts from the victim network and propagates along the way towards the source. They extended the border gateway protocol (BGP) to embed the incident report as URIs within BGP signals. This reliance on BGP has some ramifications. First of all, BGP is very complex and hard to maste...