The complexity of ecosystems is staggering, with hundreds or thousands of species interacting in a number of ways from competition and predation to facilitation and mutualism. Understanding the networks that form the systems is of growing importance, e.g. to understand how species will respond to climate change, or to predict potential knock-on effects of a biological control agent. In recent years, a variety of summary statistics for characterising the global and local properties of such networks have been derived, which provide a measure for gauging the accuracy of a mathematical model for network formation processes. However, the critical underlying assumption is that the true network is known. This is not a straightforward task to accomplish, and typi- * Corresponding author. Tel: +44 (0) cally requires minute observations and detailed field work. More importantly, knowledge about species interactions is restricted to specific kinds of interactions. For instance, while the interactions between pollinators and their host plants are amenable to direct observation, other types of species interactions, like those mentioned above, are not, and might not even be clearly defined from the outset. To discover information about complex ecological systems efficiently, new tools for inferring the structure of networks from field data are needed. In the present study, we investigate the viability of various statistical and machine learning methods recently applied in molecular systems biology: graphical Gaussian models, L1-regularised regression with least absolute shrinkage and selection operator (LASSO), sparse Bayesian regression and Bayesian networks. We have assessed the performance of these methods on data simulated from food webs of known structure, where we combined a niche model with a stochastic population model in a 2-dimensional lattice.We assessed the network reconstruction accuracy in terms of the area under the receiver operator characteristics (ROC) curve, which was typically in the range between 0.75 and 0.9, corresponding to the recovery of about 60% of the true species interactions at a false prediction rate of 5%. We also applied the models to presence/absence data for 39 European warblers, and found that the inferred species interactions showed a weak yet significant correlation with phylogenetic similarity scores, which tended to weakly increase when including bio-climate covariates and allowing for spatial autocorrelation. Our findings demonstrate that relevant patterns in ecological networks can be identified from large-scale spatial data sets with machine learning methods, and that these methods have the potential to contribute novel important tools for gaining deeper insight into the structure and stability of ecosystems.