Network Traffic Anomaly Detection Based on Spatiotemporal Feature Extraction and Channel Attention
Changpeng Ji,
Haofeng Yu,
Wei Dai
Abstract:To overcome the challenges of feature selection in traditional machine learning and enhance the accuracy of deep learning methods for anomaly traffic detection, we propose a novel method called DCGCANet. This model integrates dilated convolution, a GRU, and a Channel Attention Network, effectively combining dilated convolutional structures with GRUs to extract both temporal and spatial features for identifying anomalous patterns in network traffic. The one-dimensional dilated convolution (DC-1D) structure is d… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.