2022
DOI: 10.48550/arxiv.2207.02545
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Networks with Correlated Edge Processes

Abstract: This article proposes methods to model nonstationary temporal graph processes. This corresponds to modelling the observation of edge variables (relationships between objects) indicating interactions between pairs of nodes (or objects) exhibiting dependence (correlation) and evolution in time over interactions. This article thus blends (integer) time series models with flexible static network models to produce models of temporal graph data, and statistical fitting procedures for time-varying interaction data. W… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 35 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?