Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In many different industrial, residential, and commercial situations, gas leakage poses a serious hazard. Its discovery is crucial since it might have severe effects like explosions and fires. For the protection of persons and property, as well as to avert catastrophic tragedies, accurate and prompt gas leak detection is essential. Convolutional Neural Networks (CNNs), in particular, have demonstrated encouraging results in the detection of gas leaks in recent years. Here, a CNNbased method is provided for detecting gas leaks from image data. The suggested method employs a Softmax classifier for gas classification after extracting features from the image dataset using a combination of convolution, pooling, and fully connected layers. The usefulness of the suggested approach in accurately detecting gas leakage is shown by the experimental findings and the proposed approach is tested on a real-world gas leakage dataset. It can be added to gas detection systems to improve their functionality, lowering the likelihood of gas-related mishaps. The findings support current work to create accurate and effective machine learning-based gas leak detection systems.
In many different industrial, residential, and commercial situations, gas leakage poses a serious hazard. Its discovery is crucial since it might have severe effects like explosions and fires. For the protection of persons and property, as well as to avert catastrophic tragedies, accurate and prompt gas leak detection is essential. Convolutional Neural Networks (CNNs), in particular, have demonstrated encouraging results in the detection of gas leaks in recent years. Here, a CNNbased method is provided for detecting gas leaks from image data. The suggested method employs a Softmax classifier for gas classification after extracting features from the image dataset using a combination of convolution, pooling, and fully connected layers. The usefulness of the suggested approach in accurately detecting gas leakage is shown by the experimental findings and the proposed approach is tested on a real-world gas leakage dataset. It can be added to gas detection systems to improve their functionality, lowering the likelihood of gas-related mishaps. The findings support current work to create accurate and effective machine learning-based gas leak detection systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.