2023
DOI: 10.48550/arxiv.2303.10962
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Neural Implicit Vision-Language Feature Fields

Abstract: Recently, groundbreaking results have been presented on open-vocabulary semantic image segmentation. Such methods segment each pixel in an image into arbitrary categories provided at run-time in the form of text prompts, as opposed to a fixed set of classes defined at training time. In this work, we present a zero-shot volumetric open-vocabulary semantic scene segmentation method. Our method builds on the insight that we can fuse image features from a visionlanguage model into a neural implicit representation.… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 33 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?