2023
DOI: 10.18273/revbol.v45n1-2023007
|View full text |Cite
|
Sign up to set email alerts
|

Neural model to estimate permeability from well logs and core data

Abstract: A case study testing the effectiveness of neural networks for permeability determination in heterogeneous media using basic rock properties is presented. The dataset used consists of 213 core samples from the Morrow and Viola formations in Kansas, United States. The characterizing parameters of the cores are porosity (ϕ), water and oil saturations (Sw and So), and grain density (GD), and the additional variables from well logs are induction resistivity (ILD), gamma ray (GR) and neutron-porosity (NPHI). The neu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?