2024
DOI: 10.3390/math12020280
|View full text |Cite
|
Sign up to set email alerts
|

Neural Network Algorithm with Reinforcement Learning for Microgrid Techno-Economic Optimization

Hassan Hussein Farh

Abstract: Hybrid energy systems (HESs) are gaining prominence as a practical solution for powering remote and rural areas, overcoming limitations of conventional energy generation methods, and offering a blend of technical and economic benefits. This study focuses on optimizing the sizes of an autonomous microgrid/HES in the Kingdom of Saudi Arabia, incorporating solar photovoltaic energy, wind turbine generators, batteries, and a diesel generator. The innovative reinforcement learning neural network algorithm (RLNNA) i… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 52 publications
0
0
0
Order By: Relevance