2013
DOI: 10.4236/ojapps.2013.33036
|View full text |Cite
|
Sign up to set email alerts
|

Neural Network Approach for Solving Singular Convex Optimization with Bounded Variables

Abstract: Although frequently encountered in many practical applications, singular nonlinear optimization has been always recognized as a difficult problem. In the last decades, classical numerical techniques have been proposed to deal with the singular problem. However, the issue of numerical instability and high computational complexity has not found a satisfactory solution so far. In this paper, we consider the singular optimization problem with bounded variables constraint rather than the common unconstraint model. … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?