2014
DOI: 10.5120/15499-4141
|View full text |Cite
|
Sign up to set email alerts
|

Neural Network based Plant Identification using Leaf Characteristics Fusion

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
1

Year Published

2017
2017
2024
2024

Publication Types

Select...
4
3
2

Relationship

0
9

Authors

Journals

citations
Cited by 9 publications
(4 citation statements)
references
References 11 publications
0
3
0
1
Order By: Relevance
“…Pada penelitian-penelitian sebelumnya kebanyakan menggunkan daun untuk mengetahui/mengenali suatu jenis tanaman [6] [7]. Fitur-fiur yang ada pada daun seperti fitur tekstur, fitur bentuk ataupun fitur yang lain sangat bermanfaat untuk mengidendifikasi jenis daun [8] [9]. Salah satu dari fitur tekstur yakni fitur tekstur gray level co-occurrence matric (GLCM) .…”
Section: Pendahuluanunclassified
“…Pada penelitian-penelitian sebelumnya kebanyakan menggunkan daun untuk mengetahui/mengenali suatu jenis tanaman [6] [7]. Fitur-fiur yang ada pada daun seperti fitur tekstur, fitur bentuk ataupun fitur yang lain sangat bermanfaat untuk mengidendifikasi jenis daun [8] [9]. Salah satu dari fitur tekstur yakni fitur tekstur gray level co-occurrence matric (GLCM) .…”
Section: Pendahuluanunclassified
“…The BP neural network model is the activation function model of linear weight (19). The learning process is divided into two parts, including forward propagation process and backward propagation process, as shown in Figure 3.…”
Section: Bp Neural Network Modelmentioning
confidence: 99%
“…Both sampling and capturing of leaves is very convenient and also inexpensive. This captured leaf image may be easily moved to a computer and all its necessary features can be extracted automatically by means of techniques of image processing [3].…”
Section: Introductionmentioning
confidence: 99%