2016
DOI: 10.4236/sgre.2016.73006
|View full text |Cite
|
Sign up to set email alerts
|

Neural Network for Estimating Daily Global Solar Radiation Using Temperature, Humidity and Pressure as Unique Climatic Input Variables

Abstract: Solar radiation is one of the most important parameters for applications, development and research related to renewable energy. However, solar radiation measurements are not a simple task for several reasons. In the cases where data are not available, it is very common the use of computational models to estimate the missing data, which are based mainly on the search for relationships between weather variables, such as temperature, humidity, precipitation, cloudiness, sunshine hours, etc. But, many of these are… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
8
0
7

Year Published

2017
2017
2022
2022

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 24 publications
(15 citation statements)
references
References 26 publications
0
8
0
7
Order By: Relevance
“…The low recorded bias in most of the models is related to the good estimation of GHI by ANN models as mentioned in several studies [12,17,62,64]. We presented the overall bias among stations, which led to a decrease in the bias because of positive bias in some stations and negative bias in others in the same model, whereas the bias in all individual stations was lower than 2% except one case of 2.2% (Tables A1-A9, Figure A1).…”
Section: Discussionmentioning
confidence: 56%
See 2 more Smart Citations
“…The low recorded bias in most of the models is related to the good estimation of GHI by ANN models as mentioned in several studies [12,17,62,64]. We presented the overall bias among stations, which led to a decrease in the bias because of positive bias in some stations and negative bias in others in the same model, whereas the bias in all individual stations was lower than 2% except one case of 2.2% (Tables A1-A9, Figure A1).…”
Section: Discussionmentioning
confidence: 56%
“…Stations with long historical measurements of GHI are limited because of the cost of installation and maintenance, and issues related to the pyranometers [5]. Therefore, several studies have tried to estimate GHI empirically from the early 20th century until now from other climate variables, namely, Sunshine Duration (SD), Air Temperature (AT), cloud cover, and other variables, using the top-of-atmosphere irradiance on the horizontal surface (TOA) [6][7][8][9][10][11] and with linear regression models [12][13][14]. Recently, machine learning approaches have also been broadly used [15,16], which mostly include Artificial Neural Networks (ANNs), which will be discussed in a later section, Support Vector Machines, Random Forest [5,17,18] and some other machine learning models [19,20].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…La radiación solar estimada de esta forma pasa a formar parte del vector de entrada de la red neuronal, junto a mediciones de otras variables climáticas tomadas localmente que pueden o no haber sido usadas por el modelo empírico, dando como resultado las estimaciones finales de radiación solar. En trabajos anteriores (Jimenez et al, 2016;Jimenez, Will, Rodriguez, & Lamelas, 2014;Will et al, 2013) se comprobó que la radiación solar observada diaria presenta una relación lineal con otras variables climáticas, principalmente con temperatura, humedad, heliofanía y nubosidad, entre otras. Sin embargo, al no contar con todas estas variables usualmente utilizadas en la bibliografía, y al tratarse de estimaciones horarias de radiación solar, la calidad de las estimaciones obtenidas con modelos lineales puede verse reducida.…”
Section: Diseño Experimentalunclassified
“…En un trabajo previo (Jimenez, Barrionuevo, Will, & Rodriguez, 2016) se propuso una metodología para estimar radiación solar global diaria basada en el uso de un modelo empírico en combinación con redes neuronales artificiales, logrando buenos resultados con bajos niveles de error. El método utiliza parámetros geográficos y variables climáticas de fácil acceso en cualquier región.…”
Section: Introductionunclassified