2021
DOI: 10.48550/arxiv.2107.01081
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Neural Network Layer Algebra: A Framework to Measure Capacity and Compression in Deep Learning

Abstract: We present a new framework to measure the intrinsic properties of (deep) neural networks. While we focus on convolutional networks, our framework can be extrapolated to any network architecture. In particular, we evaluate two network properties, namely, capacity (related to expressivity) and compression, both of which depend only on the network structure and are independent of the training and test data. To this end, we propose two metrics: the first one, called layer complexity, captures the architectural com… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?