2022
DOI: 10.3390/pr10122587
|View full text |Cite
|
Sign up to set email alerts
|

Neural Network Model for Permeability Prediction from Reservoir Well Logs

Abstract: The estimation of the formation permeability is considered a vital process in assessing reservoir deliverability. The prediction of such a rock property with the use of the minimum number of inputs is mandatory. In general, porosity and permeability are independent rock petrophysical properties. Despite these observations, theoretical relationships have been proposed, such as that by the Kozeny–Carmen theory. This theory, however, treats a highly complex porous medium in a very simple manner. Hence, this study… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
4
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
5
1

Relationship

1
5

Authors

Journals

citations
Cited by 6 publications
(5 citation statements)
references
References 46 publications
0
4
0
1
Order By: Relevance
“…Dua di antara kararakteristik yang terdapat pada reservoir adalah porositas dan permeabilitas yang merupakan karakteristik utama dalam proses karakterisasi reservoir. Interpretasi well logging banyak diterapkan untuk dapat mengestimasi nilai porositas dan permeabilitas pada kedalaman yang bervariasi dikarenakan biaya yang minimal dibandingkan proses sample core (Helle & Bhatt, 2002;Lim & Kim, 2004, sebagaimana dikutip dalam Abdel Azim & Aljehani, 2022). Sebaliknya, proses sample core merupakan sumber informasi yang terpercaya dikarenakan sample core dapat langsung diambil dari sumur bor.…”
Section: Pendahuluanunclassified
“…Dua di antara kararakteristik yang terdapat pada reservoir adalah porositas dan permeabilitas yang merupakan karakteristik utama dalam proses karakterisasi reservoir. Interpretasi well logging banyak diterapkan untuk dapat mengestimasi nilai porositas dan permeabilitas pada kedalaman yang bervariasi dikarenakan biaya yang minimal dibandingkan proses sample core (Helle & Bhatt, 2002;Lim & Kim, 2004, sebagaimana dikutip dalam Abdel Azim & Aljehani, 2022). Sebaliknya, proses sample core merupakan sumber informasi yang terpercaya dikarenakan sample core dapat langsung diambil dari sumur bor.…”
Section: Pendahuluanunclassified
“…A hybrid data-driven model consisting of a PSO, SVR, and deep learning network was built by Gu et al [ 9 ] to produce more accurate predictions. Reda Abdel Azim et al [ 10 ] propose an artificial neural network (ANN) model based on the back propagation learning algorithm to predict formation permeability from well logs, using a weight visualization curve technique to optimize the number of hidden neurons and layers. In terms of model design, structural modification, parameter setting, and data pre-processing, existing approaches for the prediction of reservoir parameters tend to deliver better results.…”
Section: Introductionmentioning
confidence: 99%
“…In addition, several attempts have been made to develop predictive relationships for different physic-mechanical parameters of rocks such as compressive strength, tensile strength, shear strength, elastic moduli, porosity, permeability, acoustic wave velocities, etc. 16 , 29 32 . There is limited literature available that focuses on the predictive modeling of dynamic Poisson’s ratio.…”
Section: Introductionmentioning
confidence: 99%