The aim of this paper is the developments a strategy of control of an induction motor (IM) used as a propulsion system of an electric vehicle (EV). The proposed strategy at different operating conditions using a direct torque control (DTC) technique combined with an Artificial Neural Network (ANN) utilizes the stator flux as control variable and the flux level is selected in accordance with torque demand of the EV to achieve a high drive performance. Simulation results on a test vehicle propelled by two 38-kW induction motors showed that the proposed control approach operates satisfactorily. The analysis and simulations lead to the conclusion that the proposed system is feasible and can be tested on experimental bench.