Abstract:Recent work has shown that it is possible to learn neural networks with provable guarantees on the output of the model when subject to input perturbations, however these works have focused primarily on defending against adversarial examples for image classifiers. In this paper, we study how these provable guarantees can be naturally applied to other real world settings, namely getting performance specifications for robust virtual sensors measuring fuel injection quantities within an engine. We first demonstrat… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.