2021
DOI: 10.48550/arxiv.2105.08338
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Neural networks to predict survival from RNA-seq data in oncology

Abstract: Survival analysis consists of studying the elapsed time until an event of interest, such as the death or recovery of a patient in medical studies. This work explores the potential of neural networks in survival analysis from clinical and RNA-seq data. If the neural network approach is not recent in survival analysis, methods were classically considered for low-dimensional input data. But with the emergence of high-throughput sequencing data, the number of covariates of interest has become very large, with new … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 24 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?