2023
DOI: 10.1098/rsta.2022.0405
|View full text |Cite
|
Sign up to set email alerts
|

Neural optimization machine: a neural network approach for optimization and its application in additive manufacturing with physics-guided learning

Jie Chen,
Yongming Liu

Abstract: Neural networks (NNs) are increasingly used in design to construct the objective functions and constraints, which leads to the needs of optimization of NN models with respect to design variables. A Neural Optimization Machine (NOM) is proposed for constrained single/multi-objective optimization by appropriately designing the NN architecture, activation function and loss function. The NN's built-in backpropagation algorithm conducts the optimization and is seamlessly integrated with the additive manufacturing (… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 52 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?