When a person fails to obtain an expected reward from an object in the environment, they face a credit assignment problem: Did the absence of reward reflect an extrinsic property of the environment or an intrinsic error in motor execution? To explore this problem, we modified a popular decision-making task used in studies of reinforcement learning, the two-armed bandit task. We compared a version in which choices were indicated by key presses, the standard response in such tasks, to a version in which the choices were indicated by reaching movements, which affords execution failures. In the key press condition, participants exhibited a strong risk aversion bias; strikingly, this bias reversed in the reaching condition. This result can be explained by a reinforcement model wherein movement errors influence decision-making, either by gating reward prediction errors or by modifying an implicit representation of motor competence. Two further experiments support the gating hypothesis. First, we used a condition in which we provided visual cues indicative of movement errors but informed the participants that trial outcomes were independent of their actual movements. The main result was replicated, indicating that the gating process is independent of participants' explicit sense of control. Second, individuals with cerebellar degeneration failed to modulate their behavior between the key press and reach conditions, providing converging evidence of an implicit influence of movement error signals on reinforcement learning. These results provide a mechanistically tractable solution to the credit assignment problem.decision-making | reinforcement learning | sensory prediction error | reward prediction error | cerebellum W hen a diner reaches across the table and knocks over her coffee, the absence of anticipated reward should be attributed to a failure of coordination rather than diminish her love of coffee. Although this attribution is intuitive, current models of decision-making lack a mechanistic explanation for this seemingly simple computation. We set out to ask if, and how, selection processes in decision-making incorporate information specific to action execution and thus solve the credit assignment problem that arises when an expected reward is not obtained because of a failure in motor execution.Humans are highly capable of tracking the value of stimuli, varying their behavior on the basis of reinforcement history (1, 2), and exhibiting sensitivity to intrinsic motor noise when reward outcomes depend on movement accuracy (3-5). In real-world behavior, the underlying cause of unrewarded events is often ambiguous: A lost point in tennis could occur because the player made a poor choice about where to hit the ball or failed to properly execute the stroke. However, in laboratory studies of reinforcement learning, the underlying cause of unrewarded events is typically unambiguous, either solely dependent on properties of the stimulus or on motor noise. Thus, it remains unclear how people assign credit to either extrins...