Background: While many adolescents exhibit risky behavior, teenagers with a family history (FH+) of an alcohol use disorder (AUD) are at a heightened risk for earlier initiation of alcohol use, a more rapid escalation in frequency and quantity of alcohol consumption and developing a subsequent AUD in comparison with youth without such family history (FHÀ). Neuroanatomically, developmentally normative risk-taking behavior parallels an imbalance between more protracted development of the prefrontal cortex (PFC) and earlier development of limbic regions. Magnetic resonance imaging (MRI)-derived volumetric properties were obtained for these structures in FH+ and FHÀ adolescents.Methods: Forty-two substance-na€ ıve adolescents (13-to 14-year-olds), stratified into FH+ (N = 19, 13 girls) and FHÀ (N = 23, 11 girls) age/handedness-matched groups, completed MRI scanning at 3.0T, as well as cognitive and clinical testing. T1 images were processed using FreeSurfer to measure PFC and hippocampi/amygdalae subfields/nuclei volumes.Results: FH+ status was associated with larger hippocampal/amygdala volumes (p < 0.05), relative to FHÀ adolescents, with right amygdala results appearing to be driven by FH+ boys. Volumetric differences also were positively associated with family history density (p < 0.05) of having an AUD. Larger subfields/nuclei volumes were associated with higher anxiety levels and worse auditory verbal learning performance (p < 0.05).Conclusions: FH+ risk for AUD is detectable via neuromorphometric characteristics, which precede alcohol use onset and the potential onset of a later AUD, that are associated with emotional and cognitive measures. It is plausible that the development of limbic regions might be altered in FH+ youth, even prior to the onset of alcohol use, which could increase later risk. Thus, targeted preventative measures are warranted that serve to delay the onset of alcohol use in youth, particularly in those who are FH+ for an AUD.