Complex reasoning aims to draw a correct inference based on complex rules. As a hallmark of human intelligence, it involves a degree of explicit reading comprehension, interpretation of logical knowledge and complex rule application. In this paper, we take a step forward in complex reasoning by systematically studying the three challenging and domain-general tasks of the Law School Admission Test (LSAT), including analytical reasoning, logical reasoning and reading comprehension. We propose a hybrid reasoning system to integrate these three tasks and achieve impressive overall performance on the LSAT tests. The experimental results demonstrate that our system endows itself a certain complex reasoning ability, especially the fundamental reading comprehension and challenging logical reasoning capacities. Further analysis also shows the effectiveness of combining the pre-trained models with the task-specific reasoning module, and integrating symbolic knowledge into discrete interpretable reasoning steps in complex reasoning. We further shed a light on the potential future directions, like unsupervised symbolic knowledge extraction, model interpretability, few-shot learning and comprehensive benchmark for complex reasoning.