The deleterious consequences of snake envenomation are due to the extreme protein complexity of snake venoms. Therefore, the identification of their components is crucial for understanding the clinical manifestations of envenomation pathophysiology and for the development of effective antivenoms. In addition, snake venoms are considered as libraries of bioactive molecules that can be used to develop innovative drugs. Numerous separation and analytical techniques are combined to study snake venom composition including chromatographic techniques such as size exclusion and RP-HPLC and electrophoretic techniques. Herein, we present in detail these existing techniques and their applications in snake venom research. In the first part, we discuss the different possible technical combinations that could be used to isolate and purify SV proteins using what is known as bioassay-guided fractionation. In the second part, we describe four different proteomic strategies that could be applied for venomics studies to evaluate whole venom composition, including the mostly used technique: RP-HPLC. Eventually, we show that to date, there is no standard technique used for the separation of all snake venoms. Thus, different combinations might be developed, taking into consideration the main objective of the study, the available resources, and the properties of the target molecules to be isolated.