Neuro-Based Consensus Seeking for Nonlinear Uncertainty Multi-Agent Systems Constrained by Dead-Zone Input
Zhenhua Qin,
Rongjun Gai
Abstract:The topic about consensus target track seeking for high-order nonlinear multi-agent systems (MASs) with unmodeled dynamics, dynamic disturbances, and dead-zone input is considered in the paper. Using the strong nonlinear map characteristic of radial basis function neural networks (RBFNNs), the complex functions arising from recursive procedure are simplified. Also, inspired by input-to-state practical stability (ISpS), the authors construct a dynamical signal in order to counteract the impact of unmodeled dyna… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.