2009
DOI: 10.1016/j.gexplo.2008.03.004
|View full text |Cite
|
Sign up to set email alerts
|

Neuro-fuzzy modelling in mining geochemistry: Identification of geochemical anomalies

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
14
0
1

Year Published

2012
2012
2023
2023

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 49 publications
(15 citation statements)
references
References 17 publications
0
14
0
1
Order By: Relevance
“…Input variables can be subdivided into the following: supra-ore, upper-ore, ore, lower-ore, and sub-ore [24]. Ziaii et al (2012) and Ziaii et al (2009) showed that these groups provide the necessary information to separate BM from ZDM in porphyry-Cu mineralization [2,3].…”
Section: Methodology 41 Zonality Methodsmentioning
confidence: 99%
“…Input variables can be subdivided into the following: supra-ore, upper-ore, ore, lower-ore, and sub-ore [24]. Ziaii et al (2012) and Ziaii et al (2009) showed that these groups provide the necessary information to separate BM from ZDM in porphyry-Cu mineralization [2,3].…”
Section: Methodology 41 Zonality Methodsmentioning
confidence: 99%
“…Asimismo, las estadísticas multivariables como el coeficiente de rango correlacional, análisis factorial (Tripathi, 1979;Reimann et al, 2002;Liu et al, 2016), el análisis de componentes principales (Zuo, 2011;Cheng et al, 2011;Zuo et al, 2013;Chen et al, 2019) se ha convertido en una poderosa herramienta de prospección basado en las asociaciones geoquímicas de los depósitos minerales. Estas técnicas de estadísticas univariables y multivariables pueden usarse de forma integrada a través de inferencias difusas (fuzzy modelling) (Ziaii et al, 2009;Yousefi et al, 2014;Moradi et al, 2015) para generar mapas de prospectividad a nivel regional y local. Con el desarrollo de la inteligencia artificial, aprendizaje automático (machine learning) y aprendizaje profundo (deep learning) surgen nuevas formas de integrar una gran cantidad de datos geoquímicos y usarlos en la cartografía geoquímica para localizar nuevos targets de exploración (Kirkwood et al, 2016;Zuo, 2017;Zuo & Xiong, 2018;Zuo et al, 2019).…”
Section: Introductionunclassified
“…Meshkani et al (2011) used hierarchical and k-means clustering for identifying distribution of lead and zinc in the Sanandaj-Sirjan metallogenic zone in Iran. Ziaii et al (2009) introduced the neuro-fuzzy method for separating anomalies and showed that this method is more efficient than using multivariate statistics. Ellefsen and Smith (2016) evaluated a clustering method called the Bayesian finite mixture modeling procedure by applying it to geochemical data collected in the State of Colorado, United States of America.…”
Section: Introductionmentioning
confidence: 99%