Ovarian hormone elevations are associated with enhanced learning/memory. During behavioral estrus or pregnancy, progestins, such as progesterone (P 4 ) and its metabolite 5a-pregnan-3a-ol-20-one (3a,5a-THP), are elevated due, in part, to corpora luteal and placental secretion. During 'pseudopregnancy', the induction of corpora luteal functioning results in a hormonal milieu analogous to pregnancy, which ceases after about 12 days, due to the lack of placental formation. Multiparity is also associated with enhanced learning/memory, perhaps due to prior steroid exposure during pregnancy. Given evidence that progestins and/or parity may influence cognition, we investigated how natural alterations in the progestin milieu influence cognitive performance. In Experiment 1, virgin rats (nulliparous) or rats with two prior pregnancies (multiparous) were assessed on the object placement and recognition tasks, when in high-estrogen/P 4 (behavioral estrus) or low-estrogen/P 4 (diestrus) phases of the estrous cycle. In Experiment 2, primiparous or multiparous rats were tested in the object placement and recognition tasks when not pregnant, pseudopregnant, or pregnant (between gestational days (GDs) 6 and 12). In Experiment 3, pregnant primiparous or multiparous rats were assessed daily in the object placement or recognition tasks. Females in natural states associated with higher endogenous progestins (behavioral estrus, pregnancy, multiparity) outperformed rats in low progestin states (diestrus, non-pregnancy, nulliparity) on the object placement and recognition tasks. In earlier pregnancy, multiparous, compared with primiparous, rats had a lower corticosterone, but higher estrogen levels, concomitant with better object placement performance. From GD 13 until post partum, primiparous rats had higher 3a,5a-THP levels and improved object placement performance compared with multiparous rats.