Few tests have been developed to test the cognitive and motor capabilities of domestic cats, in spite of the suitability of cats for specific studies of neuroanatomy, infectious diseases, development, aging, and behavior. The present study evaluated a T-maze apparatus as a sensitive and reliable measure of cognition and motor function of cats. Eighteen purpose-bred, specific-pathogen-free, male, neutered domestic shorthair cats (Felis catus), 1-2 years of age, were trained and tested to a T-maze protocol using food rewards. The test protocol consisted of positional discrimination training (left arm or right arm) to criterion followed by two discrimination reversal tests. The two reversal tests documented the ability of the subjects to respond to a new reward location, and switch arms of the T-maze. Data were collected on side preference, number of correct responses, and latency of responses by the subjects. Aided by a customized computer program (CanCog Technologies), data were recorded electronically as each cat progressed from the start box to the reward arm. The protocol facilitated rapid training to a high and consistent level of performance during the discrimination training. This learning was associated with a decrease in the latency to traverse the maze to a mean of 4.80 ± 0.87 s indicating strong motivation and consistent performance. When the rewarded side was reversed in the test phase, cats required more trials to reach criterion, as expected, but again showed reliable learning. The latency to reward in the first session of reversal increased 86% from the first to the last trial indicating that it may provide a useful index of cognitive processing. Latencies subsequently decreased as the new reversal paradigm was learned. This paradigm provides a relatively rapid and reliable test of cognitive motor performance that can be used in various settings for evaluation of feline cognitive and motor function.