In this paper, we study DmOAZ, the unique Drosophila melanogaster homologue of the OAZ zinc finger protein family. We show partial conservation of the zinc finger organization between DmOAZ and the vertebrate members of this family. We determine the exon/intron structure of the dmOAZ gene and deduce its open reading frame. Reverse transcriptase-polymerase chain reaction analysis shows that dmOAZ is transcribed throughout life. In the embryo, strongest DmOAZ expression is observed in the posterior spiracles. We suggest that dmOAZ acts as a secondary target of the Abd-B gene in posterior spiracle development, downstream of cut and ems. In a newly created loss-of-function mutant, dmOAZ 93 , the "filzkörper" part of the posterior spiracles, is indeed structurally abnormal. The dmOAZ 93 mutant is a larval lethal, a phenotype that may be linked to the spiracular defect. Given the dmOAZ 93 mutant as a new tool, the fruit fly may provide an alternative model for analyzing in vivo the functions of OAZ family members.