In addition to dopamine (DA), evidence indicates that glutamatergic regulation of the mesolimbic reward pathway is involved in mediating the abuse-related effects of psychostimulants, including amphetamine. Since rats raised in an enrichment condition (EC) during development are more sensitive to the locomotor stimulant effects of acute amphetamine compared to rats raised in an impoverished condition (IC), the present study examined amphetamine-induced extracellullar glutamate and aspartate levels in the nucleus accumbens (NAcc) of EC and IC rats using in vivo microdialysis coupled with HPLC-electrochemical detection. Basal extracellular levels of glutamate or aspartate were not significantly different between EC and IC rats. Acute systemic amphetamine (0.5 or 2.0 mg/kg, sc) increased extracellular glutamate levels in NAcc of EC rats (137% or 305% of basal) and IC rats (120% or 187% of basal). Similarly, acute systemic amphetamine (0.5 or 2.0 mg/kg, sc) elevated aspartate levels in NAcc of EC rats (148% or 237% of basal) and IC rats (115% or 170% of basal). Glutamate levels were elevated by amphetamine to a greater extent in EC rats than in IC rats. Pretreatment with systemic MK-801 (0.25 mg/kg, ip), a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, prevented the acute amphetamine-induced increase in extracellular glutamate and aspartate levels in NAcc. Overall, these results suggest that alterations in glutamate in the NAcc may be involved in the environment-dependent effects of amphetamine.