Using immunohistochemical labeling of the cells containing neuronal NO synthase (nNOS), tyrosine hydroxylase (TH), GABA, and parvalbumin (PA), as well as histochemical marking of choline acetyltransferase-containing neurons, we examined the neurochemical organization of the glomerular nuclei and preglomerular complex in the brain of the masu salmon (Oncorhynchus masou). Injections of the carbocyanine dye DiI allowed us to examine projections of neurons of the preglomerular and mammillary nuclei in the salmon brain. We showed that cholinergic, GABA-, PA-, TH-, and nNOS-immunopositive neurons belonging to different morphological types are present in the glomerular and medial preglomerular nuclei. The analysis of correlations between morphometric characteristics of the cells belonging to different neurochemical types and densitometric estimates of amounts of neurochemical agents present in these cells allowed us to hypothesize that there are close morphofunctional interrelations in cell populations possessing different neurochemical and morphometric characteristics. These interrelations of the cells belonging to different chemotypes are, probably, realized as mediatory/modulatory ones. The presence of a great number of small slightly differentiated cells in the preglomerular and glomerular nuclei allows us to suppose that the growth of the greatest sensory center of the salmon brain is provided by neuroblasts that migrate from the proliferative zones in the course of postembryonal neurogenesis. It is also hypothesized that NO, TH, and GABA are involved in paracrine control of the postnatal morphogenesis of the salmon preglomerular complex. The data obtained by hodological analysis indicate that the nuclei of the preglomerular complex obtain afferent projections from the dorsomedial and ventroventral telencephalic regions, preoptic nucleus, periventricular layer of the tectum, and posterior central thalamic nucleus. Our study demonstrated the existence of reciprocal functional connections between the preglomerular complex (most important diencephalic center for transmission of sensory information) and dorsomedial and ventral regions of the telencephalon in the masu salmon.