Schizophrenia is a clinically heterogeneous disorder that is perhaps more accurately characterized as "the schizophrenia syndrome." This clinical heterogeneity is reflected in the heterogeneous neurobiological presentations associated with the illness. Moreover, even highly specific neural aberrations that are associated with distinct symptoms of schizophrenia are linked to a wide range of risk factors. As such, any individual with schizophrenia likely has a particular set of risk factors that interact and converge to cross the disease threshold, forming a particular etiology that ultimately generates a core pathophysiology. This core pathophysiology may then produce 1 or more symptoms of schizophrenia, leading to common symptoms across individuals in spite of disparate etiologies. As such, the schizophrenia syndrome can be considered as an equifinal entity: a state of dysfunction that can arise from different upstream etiologies. Moreover, schizophrenia etiologies are multifactorial and can involve the interactive effects of a broad range of genetic, environmental, and developmental risk factors. Through a consideration of how disparate etiologies, caused by different sets of risk factors, converge on the same net dysfunction, this paper aims to model the equifinal nature of schizophrenia symptoms. To demonstrate the equifinal model, we discuss how maternal infection and adolescent cannabis use, 2 recognized schizophrenia risk factors, may interact with other genetic, environmental, and/or developmental risk factors to cause the conserved clinical presentation of impaired working memory.