Background The occurrence of neural tube defects is a complex process in which genes, internal and external environment and other factors jointly influence and occur interactively. In this experiment, animal models of different energy balance states are constructed. To explore the mechanism of fos and leptin-leptin receptor during neural tube development of offspring under different energy states and its effect on neural tube development of offspringMethods Using gene identification technology to obtain Mex3c+/- negative energy balance mice and high-fat diet to obtain positive energy balance mice, and obtain E10.5d, E12.5d, E14.5d embryos. We will verify the expression of fos, leptin, LEPR, nestin, PAX3, and H3K27me3 proteins in the neural tube of the offspring through relevant experimental methods.Results We have successfully constructed animal models, Control group (18.82g±1.54g), Mex3c group (18.84g±1.08g), HFD group (22.61g±1.10g). Neural tube HE staining showen that compared with the Control group, the neuronal maturity of the Mex3c group and the HFD group was reduced. Immunohistochemical staining showed that both fos and leptin were expressed on the nucleus, and LEPR was expressed on the cell membrane. Western blot experiments showed that compared with the Control group, the Mex3c group and the HFD group had low expression of fos protein (P<0.01), the Mex3c group had high expression of LEPR protein (P<0.01) and the HFD group had high expression of LEPR protein (P<0.01). Immunostaining experiments showed that nestin was expressed in nerve fibers, and PAX3 and H3K27me3 were both expressed in the nucleus. Western blooting experiment showed that compared with the Control group, the Mex3c group had high expression of nestin protein (P<0.01), PAX3 protein (P<0.01), H3K27me3 (P<0.01), and the HFD group had high expression of nestin protein (P<0.01). ) And PAX3 protein (P<0.01), H3K27me3 (P<0.01).ConclusionsMex3c regulates leptin and LEPR by enhancing the expression of fos mRNA to participate in the neural tube development process of offspring. The neural tube nestin, PAX3, and H3K27me3 of the offspring of Mex3c+/- mice and high-fat diet mice continue to be highly expressed. Mex3c+/- mice express low leptin, and high-fat diet mice highly express leptin; preliminary reveals the regulation of different energy states Leptin-LEPR is involved in the process of neurodevelopment. Mex3c mutant mice and mice on a high-fat diet lead to decreased neurodevelopmental maturity.