Prostate cancer is highly sensitive to hormone therapy because androgens are essential for prostate cancer cell growth. However, with the nearly invariable progression of this disease to androgen independence, endocrine therapy ultimately fails to control prostate cancer in most patients. Androgen-independent acquisition may involve neuroendocrine transdifferentiation, but there is little knowledge about this process, which is presently controversial. In this study, we investigated this question in a novel model of human androgen-dependent LNCaP cells cultured for long periods in hormone-deprived conditions. Strikingly, characterization of the neuroendocrine phenotype by transcriptomic, metabolomic, and other statistically integrated analyses showed how hormone-deprived LNCaP cells could transdifferentiate to a nonmalignant neuroendocrine phenotype. Notably, conditioned media from neuroendocrine-like cells affected LNCaP cell proliferation. Predictive in silico models illustrated how after an initial period, when LNCaP cell survival was compromised by an arising population of neuroendocrine-like cells, a sudden trend reversal occurred in which the neuroendocrine-like cells functioned to sustain the remaining androgen-dependent LNCaP cells. Our findings provide direct biologic and molecular support for the concept that neuroendocrine transdifferentiation in prostate cancer cell populations influences the progression to androgen independence. Cancer Res; 75(15); 2975-86. Ó2015 AACR.