Neurotechnological interventions for specific cognitive, emotional, and behavioral conditions have been developed and employed in many parts of the world, and the use of "the most current tools" to affect thought and behavior has been abundant through much of human history. Examples include trephinations (ie, Aztecs, Egyptians, Galen in Rome, Burckhardt in Switzerland), leucotomies (eg, Moniz in Portugal), transorbital lobotomies (eg, Freeman in the US), and electric stimulation (eg, Delgado in Spain). The use, misuse, and overuse of such techniques during the 1960s exposed significant medical and ethical concerns and controversies about their validity, safety, success, risks, harms, and value, thereby calling their further use into question.In recent years, the increased global burden of mental disorders, and the major efforts and advanced resources toward advancing neuroscience and neurotechnology (neuroS/T) from major brain initiatives from developed countries, 1 have prompted, at very least (1) a re-evaluation of currently available approaches; and (2) development of newly emerging methods for assessing and affecting brain structure and functions. Neuromodulatory approaches have been-and are being further-developed to increase the sophistication, capability, accuracy, and effectiveness of both transcranial interventions (ie, transcranial electrical stimulation-tES; transcranial magnetic stimulation-TMS; vagal nerve stimulation-VNS) as well as more invasive approaches (eg, indwelling VNS; deep brain stimulation-DBS). Although these techniques and tools are mainly for therapeutic aims, TMS and tES are also currently utilized for optimizing performance (viz. enhancement). 2 Acknowledging the potential scope and impact of enhancement on decision-making (ie, nudging by Thaler, 3 and manipulation of cognitive biases by Kahneman 4 ), has increased realistic concerns about the use of neuroenhancement in the social domain. 5 Thus, the rapid pace of development, and increasing clinical and social demand for these neuromodulatory technologies give rise to ethical, legal and social issues, question, problems, and caveats that need to be addressed, especially because these neurotechnologies are not always subject to rigorous regulatory approval process before becoming available to the medical and general public. 6 To illustrate, in the United States (US), DBS can be employed under the "Humanitarian Device Exemption" issued by the Food and Drug Administration (FDA), which requires ongoing detailed scrutiny of the potential promises, benefits, risks, and harms for prudent and responsible translational clinical use. 7 However, such iterative analysis and oversight do not regard or regulate transnational and cross-cultural implications when this neurotechnology is considered and/or applied for medical (and/or non-medical) uses in countries with different ecologies (ie, culture, economic resources, politics, philosophies, ethics, and laws), such as Mexico.Recently, we explored mental health clinicians' and researchers' percept...