Severe traumatic brain injury residual cognitive impairments significantly impact the quality of life. EEG-based neurofeedback is a technique successfully used in traumatic brain injury and stroke to rehabilitate cognitive and motor sequelae. There are not individualized comparisons of the effects of EEG-based neurofeedback versus conventional neuropsychological rehabilitation. We present a case study of a traumatic brain injury subject in whom eight sessions of a neuropsychological rehabilitation protocol targeting attention, executive functions, and working memory as compared with a personalized EEG-based neurofeedback protocol focused on the electrodes and bands that differed from healthy subjects (F3, F1, Fz, FC3, FC1, and FCz), targeting the inhibition of theta frequency band (3 Hz−7 Hz) in the same number of sessions. Quantitative EEG and neuropsychological testing were performed. Clear benefits of EEG-based neurofeedback were found in divided and sustained attention and several aspects related to visuospatial skills and the processing speed of motor-dependent tasks. Correlative quantitative EEG changes justify the results. EEG-based neurofeedback is probably an excellent complementary technique to be considered to enhance conventional neuropsychological rehabilitation.