RESUMENLa Espermidina es un poliamina que podemos encontrar en frutas, verduras, productos cárnicos y lácteos; además de ser conocida por su papel modulador de funciones del ADN, ARN, nucleótidos trifosfatos y proteínas. Según, estudios experimentales recientes demostraron que cumple una función inhibitoria sobre la proteína relacionada con la patogénesis de la distrofia miotónica tipo 1 (MBNL-1) dando luces a esta enfermedad aun sin cura; sin embargo, estos estudios no han proporcionado suficientes datos para aclarar su capacidad inhibitoria. En este trabajo se comprobó la interacción existente entre la espermidina y la proteína MBNL-1 mediante química computacional. El análisis mediante el uso de mecánica cuántica (QM) se llevó a cabo con la funcional CAM-B3LYP usando un set de base TZVP. En relación a la mecánica molecular (MM) se utilizó un campo de fuerza OPLS-aa, seguidamente se realizó una solvatación de la proteína MBNL-1 estabilizándose en menos de 0.3nm. Se empleó un ensamble canónico NVT donde la temperatura, número de moles y volumen permanecieron constantes asemejando así la simulación a una temperatura fisiológica a la del ser humano. Adicionalmente, el análisis de Ramachandran permitió validar la estructura la cual se conservó a través del tiempo (100ns) obteniendo un 98.4% de certeza. Finalmente quedó demostrado que la interacción in silico de la espermidina-MBNL-1 fue tan semejante como la interacción reportada in vivo e in vitro.Palabras Clave: Agente inhibidor, distrofia miotónica tipo 1, espermidina, mecánica cuántica, mecánica molecular, química computacional.
ABSTRACTSpermidine is a polyamine compound found in fruits, vegetables, meats and milk products. It is also known for its role as a modulator of functions for DNA, RNA, nucleotide triphosphates and proteins. Some recent experimental studies have shown that it has an inhibitory function on the protein related to the pathogenesis of myotonic dystrophy type 1 (MBNL-1), providing some hope in relation to this disease presently without cure. However these studies have not provided sufficient information to explain its inhibitory role. In the present work, the existing interaction between spermidine and the MBNL-1 protein has been confirmed by computational chemistry. The quantum mechanics analysis was carried out with the CAM-B3LYP density functional, using a TZVP basis set. For the molecular mechanics, the OPLS-AA force field was used, followed immediately by the solvation of the MBNL-1 protein, which stabilized at less than 0.3 nm. As an NVT canonical ensemble (constant volume, temperature and number of moles) was used, the process can simulate what is happening at the physiological temperature of a human body. Furthermore, a Ramachandran analysis allowed the validation of the structure, which was preserved through time (100 ns), at a 98.4 % confidence level. It was therefore demonstrated that the in silico interaction between spermidine and the MBNL-1 protein was similar to the reported interactions in vivo and in vitro.