Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Sports-related concussions (SRCs) pose significant challenges to college-aged athletes, eliciting both immediate symptoms and subacute cognitive and motor function impairment. While most symptoms and impairments resolve within weeks, athletes with repeat SRCs may experience heightened risk for prolonged recovery trajectories, future musculoskeletal injuries, and long-term neurocognitive deficits. This includes impaired dual task performance and altered neurophysiology that could persist across the lifespan and elicit future pathophysiology and neurodegeneration. Thus, it is imperative to improve our understanding of neurophysiology after SRC. This study aimed to investigate the impact of repeat SRCs on dual task performance and associated neural recruitment using functional near-infrared spectroscopy (fNIRS).A total of 37 college-aged athletes (ages 18-24) participated in this cross-sectional observational study. Among these athletes, 20 had a history of two or more SRCs, while 17 had never sustained a SRC and served as controls. Participants completed the Neuroimaging-Compatible Dual Task Screen (NC-DTS) while fNIRS measured neural recruitment in the frontoparietal attention network and the primary motor and sensory cortices.Behavioral analysis revealed that athletes with repeat SRCs exhibited comparable single task and dual task performance to control athletes. Additionally, dual task effects (DTE), which capture performance declines in dual tasks versus single tasks, did not significantly differ between groups. Notably, the cohort of athletes with repeat SRC in this study had a longer time since their last SRC (mean = 1.75 years) than majority of previous SRC studies. Neuroimaging results indicated altered neural recruitment patterns in athletes with multiple repeat SRCs during both single and dual tasks. Specifically, athletes with repeat SRCs demonstrated increased prefrontal cortex (PFC) activation during single motor tasks compared to controls (P< 0.001,d= 0.47). Conversely, during dual tasks, these same athletes exhibited reduced PFC activation (P< 0.001,d= 0.29) and primary motor cortex (M1) activation (P= 0.038,d= 0.16) compared to their single task activation.These findings emphasize the complex relationship between SRC history, dual task performance, and changes in neurophysiology. While athletes with repeat SRCs demonstrate recovery in behavioral dual task performance, persistent alterations in neural recruitment patterns suggest ongoing neurophysiological changes, possibly indicating compensatory neural strategies and inefficient neural resource allocation, even beyond symptom resolution and medical clearance. Understanding the compensatory neural recruitment strategies that support behavioral performance following repeat SRCs can inform return-to-play decisions, future musculoskeletal injury risk, and the long-term impact of SRCs on neurocognitive function.
Sports-related concussions (SRCs) pose significant challenges to college-aged athletes, eliciting both immediate symptoms and subacute cognitive and motor function impairment. While most symptoms and impairments resolve within weeks, athletes with repeat SRCs may experience heightened risk for prolonged recovery trajectories, future musculoskeletal injuries, and long-term neurocognitive deficits. This includes impaired dual task performance and altered neurophysiology that could persist across the lifespan and elicit future pathophysiology and neurodegeneration. Thus, it is imperative to improve our understanding of neurophysiology after SRC. This study aimed to investigate the impact of repeat SRCs on dual task performance and associated neural recruitment using functional near-infrared spectroscopy (fNIRS).A total of 37 college-aged athletes (ages 18-24) participated in this cross-sectional observational study. Among these athletes, 20 had a history of two or more SRCs, while 17 had never sustained a SRC and served as controls. Participants completed the Neuroimaging-Compatible Dual Task Screen (NC-DTS) while fNIRS measured neural recruitment in the frontoparietal attention network and the primary motor and sensory cortices.Behavioral analysis revealed that athletes with repeat SRCs exhibited comparable single task and dual task performance to control athletes. Additionally, dual task effects (DTE), which capture performance declines in dual tasks versus single tasks, did not significantly differ between groups. Notably, the cohort of athletes with repeat SRC in this study had a longer time since their last SRC (mean = 1.75 years) than majority of previous SRC studies. Neuroimaging results indicated altered neural recruitment patterns in athletes with multiple repeat SRCs during both single and dual tasks. Specifically, athletes with repeat SRCs demonstrated increased prefrontal cortex (PFC) activation during single motor tasks compared to controls (P< 0.001,d= 0.47). Conversely, during dual tasks, these same athletes exhibited reduced PFC activation (P< 0.001,d= 0.29) and primary motor cortex (M1) activation (P= 0.038,d= 0.16) compared to their single task activation.These findings emphasize the complex relationship between SRC history, dual task performance, and changes in neurophysiology. While athletes with repeat SRCs demonstrate recovery in behavioral dual task performance, persistent alterations in neural recruitment patterns suggest ongoing neurophysiological changes, possibly indicating compensatory neural strategies and inefficient neural resource allocation, even beyond symptom resolution and medical clearance. Understanding the compensatory neural recruitment strategies that support behavioral performance following repeat SRCs can inform return-to-play decisions, future musculoskeletal injury risk, and the long-term impact of SRCs on neurocognitive function.
Sports-related concussions (SRCs) pose significant challenges to college-aged athletes, eliciting both immediate symptoms and subacute cognitive and motor function impairment. While most symptoms and impairments resolve within weeks, athletes with repeat SRCs may experience heightened risk for prolonged recovery trajectories, future musculoskeletal injuries, and long-term neurocognitive deficits. This study aimed to investigate the impact of repeat SRCs on dual task performance and associated neural recruitment using functional near-infrared spectroscopy (fNIRS). A total of 37 college-aged athletes (ages 18–24) participated in this cross-sectional observational study, 20 with a history of two or more SRCs, and 17 controls that had never sustained an SRC. Participants completed the Neuroimaging-Compatible Dual Task Screen (NC-DTS) while neural recruitment in the frontoparietal attention network and the primary motor and sensory cortices was measured using fNIRS. Athletes with repeat SRCs exhibited comparable single task and dual task performance to control athletes. Neuroimaging results indicated altered neural recruitment patterns in athletes with repeat SRCs during both single and dual tasks. Specifically, athletes with repeat SRCs demonstrated increased prefrontal cortex (PFC) activation during single motor tasks compared to controls (p < 0.001, d = 0.47). Conversely, during dual tasks, these same athletes exhibited reduced PFC activation (p < 0.001, d = 0.29) compared to their single task activation. These findings emphasize that while athletes with repeat SRCs demonstrate typical single and dual task performance, persistent alterations in neural recruitment patterns suggest ongoing neurophysiological changes, possibly indicating compensatory neural strategies and inefficient neural resource allocation, even beyond symptom resolution and medical clearance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.