The infectious disease melioidosis is caused by the bacterium Burkholderia pseudomallei. Melioidosis is characterised by high mortality and morbidity and can involve the central nervous system (CNS). We have previously discovered that B. pseudomallei can infect the CNS via the olfactory and trigeminal nerves in mice. We have shown that the nerve path is dependent on mouse strain, with outbred mice showing resistance to olfactory nerve infection. Damage to the nasal epithelium by environmental factors is common, and we hypothesised that injury to the olfactory epithelium may increase the vulnerability of the olfactory nerve to microbial insult. We therefore investigated this, using outbred mice that were intranasally inoculated with B. pseudomallei, with or without methimazole-induced injury to the olfactory neuroepithelium. Methimazole-mediated injury resulted in increased B. pseudomallei invasion of the olfactory epithelium, and only in pre-injured animals were bacteria found in the olfactory nerve and bulb. In vitro assays demonstrated that B. pseudomallei readily infected glial cells isolated from the olfactory and trigeminal nerves (olfactory ensheathing cells and trigeminal Schwann cells, respectively). Bacteria were degraded by some cells but persisted in other cells, which led to the formation of multinucleated giant cells (MNGCs), with olfactory ensheathing cells less likely to form MNGCs than Schwann cells. Double Cap mutant bacteria, lacking the protein BimA, did not form MNGCs. These data suggest that injuries to the olfactory epithelium expose the primary olfactory nervous system to bacterial invasion, which can then result in CNS infection with potential pathogenic consequences for the glial cells.PLOS Neglected Tropical Diseases | https://doi.Infections of the central nervous system (CNS), though uncommon, are associated with severe morbidity and mortality. Burkholderia pseudomallei, the causative agent of melioidosis, can infect the CNS. We have shown that B. pseudomallei can enter the CNS via peripheral nerves extending between the nasal cavity and the brain (bypassing the bloodbrain/blood-cerebrospinal fluid barriers). In the current study, we show that prior injury to the olfactory epithelium can increase B. pseudomallei invasion of the olfactory nerve and bulb, highlighting a novel risk factor for CNS infections. We also demonstrate the ability of peripheral nerve glia to internalise B. pseudomallei, resulting in the formation of multinucleated giant cells (MNGCs), dependent on the bacterial protein BimA. These findings provide important new insights into the pathogenesis of B. pseudomallei.B. pseudomallei infects olfactory bulb after injury PLOS Neglected Tropical Diseases | https://doi.