SummaryMany animal tissues/cells are photosensitive, yet only two types of photoreceptors (opsins and cryptochromes) have been discovered in metazoans. The question arises as to whether unknown types of photoreceptors exist in the animal kingdom. LITE-1, a seven-transmembrane gustatory receptor (GR) homolog, mediates UV light-induced avoidance behavior in C. elegans. However, whether LITE-1 functions as a chemoreceptor or photoreceptor has not been determined. Here, we show that LITE-1 directly absorbs both UVA and UVB light with an extinction coefficient 10-100 times that of opsins and cryptochromes, indicating that LITE-1 is highly efficient in capturing photons. Unlike typical photoreceptor proteins employing a prosthetic chromophore to capture photons, LITE-1 strictly depends on its protein conformation for photon absorption. We further identified two tryptophan residues critical for LITE-1 function. Interestingly, unlike GPCRs, LITE-1 adopts a reversed membrane topology. Thus, LITE-1, a taste receptor homolog, represents a distinct type of photoreceptor in the animal kingdom.