Aim:The aim of this study is to find relational connections (interdependence) between the two most general categorical aspects of a neuron, i.e., between the form (morphology) and its function, using as a model for this task dentate nucleus neurons. Furthermore, the configuration of the dentatostriate nucleotopic inter-cluster mapping of the dentatostriate neural network is investigated in order to determine mutual, inter-neuronal, neuromorphofunctional remote influence, i.e. the neuromorphofunctional relations at the level of a neural network. (Semi) virtual dentate and neostriate adult human neuronal samples were used.
Materials and methods:Neuromorphological parameters of each neuron have been directly measured, i.e. experimentally determined, whereas the corresponding neurofunctional parameters have been theoretically obtained. The neuromorphological parameters determine the following properties of a neuron: neuron shape, compartmental length and size/ surface, dendritic branching, complexity and organization of neuronal morphology. The group of neurofunctional parameters determines functional aspects of action potential (AV/AP), as well as neurofunctional properties of the perikaryodendritic compartment of a neuron. Data analysis is performed using response surface (RSM) modeling, along with partial least-squares (PLSR) and principal component regression analysis (PCR), accompanied by canonical and Pearson correlation analysis. A stepwise algorithm formulates the complete data analysis.
Results:Obtained RSM models represent response-predictor relations, where a neuromorphological/functional response parameter is expressed as a function in terms of parameters of other category (morphology/function). Additionally, RSM modeling is also used to decipher the symmetry of the dentatostriate inter-cluster neural network by the corresponding inter-cluster inter-nuclear mapping, using so-called integral parameters/variables, obtained on a computational, theoretical manner. The obtained network is a fully connected, symmetric, Hopfield neural network.
Conclusion:Neuronal morphology and function are definitely interrelated and depend on each other. By intensity, however, this interconnectedness can be treated as mild to moderate. It is determined by elementary neuromorphofunctional relations, observed at the macroscopic, phenomenological level, i.e. only through measured