Objectives; Chronic glomerulonephritis (CGN) refers to the inflammation of glomeruli in the kidneys. Glomerular mesangial cells (GMCs) play a pivotal role in the development of CGN. In the present study, we investigated the impact of ALKBH5, a m6A demethylase, on inflammation and hyperproliferation in mouse glomerular mesangial cells (MMCs) and elucidated the molecular mechanisms contributing to CGN. Materials and methods; Western blotting and reverse transcriptase-polymerase chain reaction (RT-qPCR) were employed to evaluate the expression of relevant genes, including ALKBH5 and TRIM13. In addition, enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of inflammatory factors (interleukin [IL]-1β, tumor necrosis factor [TNF]-α, and IL-10) in the lipopolysaccharide (LPS)-induced MMCs supernatant. Methylated RNA immunoprecipitation (MeRIP) was performed to investigate the effect of ALKBH5 on the levels of TRIM13-m6A mRNA. The stability of TRIM13 mRNA was evaluated using an actinomycin D assay. Results; Significantly elevated expression of ALKBH5 was found in LPS-induced MMCs. Interference with ALKBH5 expression inhibited inflammation and excessive proliferation in LPS-induced MMCs. Moreover, interfering with ALKBH5 expression significantly reduced the levels of TRIM13-m6A modification. The overexpression of TRIM13 in MMCs reversed the inflammation and proliferation induced by ALKBH5 interference. In addition, interference with TRIM13 expression inhibited the activation of the nuclear factor (NF)-κB pathway and suppressed inflammation and proliferation in MMCs. Conclusion; Inhibiting ALKBH5 hinders inflammation and hyperproliferation by improving TRIM13-m6A modification in glomerular MCs. We believe these findings will further provide insights into the molecular mechanisms and potential therapeutic targets for CGN.