(1) Background: Efavirenz plasma concentration displays wide between-patient variability partly due to pharmacogenetic variation and autoinduction. Pediatric data on efavirenz pharmacokinetics and the relevance of pharmacogenetic variation are scarce, particularly from sub-Saharan Africa, where >90% of HIV-infected children live and population genetic diversity is extensive. We prospectively investigated the short- and long-term effects of efavirenz auto-induction on plasma drug exposure and the influence of pharmacogenetics among HIV-infected Ethiopian children. (2) Method: Treatment-naïve HIV-infected children aged 3–16 years old (n = 111) were enrolled prospectively to initiate efavirenz-based combination antiretroviral therapy (cART). Plasma efavirenz concentrations were quantified at 4, 8, 12, 24, and 48 weeks of cART. Genotyping for CYP2B6, CYP3A5, UGT2B7, ABCB1, and SLCO1B1 common functional variant alleles was performed. (3) Results: The efavirenz plasma concentration reached a peak at two months, declined by the 3rd month, and stabilized thereafter, with no significant difference in geometric mean over time. On average, one-fourth of the children had plasma efavirenz concentrations ≥4 µg/mL. On multivariate analysis, CYP2B6*6 and ABCB1c.3435 C > T genotypes and low pre-treatment low-density lipoprotein (LDL) were significantly associated with higher plasma efavirenz concentration regardless of treatment duration. Duration of cART, sex, age, nutritional status, weight, and SLCO1B, CYP3A5, UGT2B7, and ABCB1 rs3842 genotypes were not significant predictors of efavirenz plasma exposure. (4) Conclusion: Pre-treatment LDL cholesterol and CYP2B6*6 and ABCB1c.3435 C > T genotypes predict efavirenz plasma exposure among HIV-infected children, but treatment-duration-dependent changes in plasma efavirenz exposure due to auto-induction are not statistically significant.