Significance
Enabling distributed neurologic and cognitive functions in soft deformable devices, such as robotics, wearables, skin prosthetics, bioelectronics, etc., represents a massive leap in their development. The results presented here reveal the device characteristics of the building block, i.e., a stretchable elastomeric synaptic transistor, its characteristics under various levels of biaxial strain, and performances of various stretchy distributed neuromorphic devices. The stretchable neuromorphic array of synaptic transistors and the neuromorphic imaging sensory skin enable platforms to create a wide range of soft devices and systems with implemented neuromorphic and cognitive functions, including artificial cognitive skins, wearable neuromorphic computing, artificial organs, neurorobotics, and skin prosthetics.