We assessed the impacts of exposure to an environmentally representative concentration (0.83 mg/L) of the explosive cyclotrimethylenetrinitramine (RDX) on fathead minnows (Pimephales promelas) in one-year and multigenerational bioassays. In the one-year bioassay, impacts were assessed by statistical comparisons of females from breeding groups reared in control or RDX-exposure conditions. The RDX had no significant effect on gonadosomatic index or condition factor assayed at 1 d and at one, three, six, nine, and 12 months. The liver-somatic index was significantly increased versus controls only at the 12-month timepoint. RDX had no significant effect on live-prey capture rates, egg production, or fertilization. RDX caused minimal differential-transcript expression with no consistent discernable effect on gene-functional categories for either brain or liver tissues in the one-year exposure. In the multigenerational assay, the effects of acute (96 h) exposure to RDX were compared in fish reared to the F(2) generation in either control or RDX-exposure conditions. Enrichment of gene functions including neuroexcitatory glutamate metabolism, sensory signaling, and neurological development were observed comparing control-reared and RDX-reared fish. Our results indicated that exposure to RDX at a concentration representing the highest levels observed in the environment (0.83 mg/L) had limited impacts on genomic, individual, and population-level endpoints in fathead minnows in a one-year exposure. However, multigenerational exposures altered transcript expression related to neural development and function. Environ.