Neutralizing antibodies could be antivirals against COVID-19 pandemics. Here, we report isolation of four human-origin monoclonal antibodies from a convalescent patient, all of which display neutralization abilities. B38 and H4 block the binding between virus S-protein RBD and cellular receptor ACE2. A competition assay indicates their different epitopes on the RBD, making them a potential virus-targeting MAb-pair to avoid immune escape in future clinical applications. Moreover, a therapeutic study in a mouse model validated that these antibodies can reduce virus titers in infected lungs. The RBD-B38 complex structure revealed that most residues on the epitope overlap with the RBD-ACE2 binding interface, explaining the blocking effect and neutralizing capacity. Our results highlight the promise of antibodybased therapeutics and provide a structural basis for rational vaccine design.