Collisions of C3Hn+ (n = 2-8) ions and some of their per- deuterated analogs with room temperature carbon (HOPG) surfaces (hydrocarbon-covered) were investigated over the incident energy range 13-45 eV in beam scattering experiments. The mass spectra of product ions were measured and main fragmentation paths of the incident projectile ions, energized in the surface collision, were determined. The extent of fragmentation increased with increasing incident energy. Mass spectra of even-electron ions C3H7+ and C3H5+ showed only fragmentations, mass spectra of radical cations C3H8*+ and C3H6*+ showed both simple fragmentations of the projectile ion and formation of products of its surface chemical reaction (H-atom transfer between the projectile ion and hydrocarbons on the surface). No carbon-chain build-up reaction (formation of C4 hydrocarbons) was detected. The survival probability of the incident ions, S(a), was usually found to be about 1-2% for the radical cation projectile ions C3H8*+, C3H6*+, C3H4*+ and C3H2*+ and several percent up to about 20% for the even-electron projectile ions C3H7+, C3H5+, C3H3+. A plot of S(a) values of C1, C2, C3, some C7 hydrocarbon ions, Ar+ and CO2+ on hydrocarbon-covered carbon surfaces as a function of the ionization energies (IE) of the projectile species showed a drop from about 10% to about 1% and less at IE 8.5-9.5 eV and further decrease with increasing IE. A strong correlation was found between log S(a) and IE, a linear decrease over the entire range of IE investigated (7-16 eV), described by log S(a) = (3.9 +/- 0.5)-(0.39 +/- 0.04) IE.