CrGe belongs to the family of cubic B20 intermetallics. From experimental investigations by susceptibility and de Haas-van Alphen (dHvA) measurements and from calculations of its electronic band structure by densityfunctional theory (DFT), CrGe is found to form a metallic paramagnetic ground state. Combining dHvA and DFT data, a detailed picture of the Fermi surface of CrGe is provided. The proximity to a magnetic longrange ordering in CrGe is suggested from a prominent thermal magnetic susceptibility. The possibility to induce magnetic long-range order in CrGe is discussed based on calculated properties for CrGe substituting Ge by As or Sn, and from a comparison with MnGe and the alloy series Cr 1−x Mn x Ge. Owing to the noncentrosymmetric and nonsymmorphic crystal structure of CrGe, in absence of broken time reversal symmetry, its band structure is marked by forced nodal lines at the Fermi edge. Moreover, this material hosts degenerate unconventional electronic quasiparticles. In particular, CrGe exhibits a sixfold degeneracy of fermions crossing within about 5 meV of the Fermi energy at the R point of the Brillouin zone.