The following article reviews the technique of neutron diffraction and its effectiveness in probing materials of chemical interest. The main advantage of neutrons is their ability to detect hydrogen atoms. We describe in this article several examples where neutrons offered additional information that was otherwise unavailable from X‐rays. We have summarized a number of structures studied using neutron diffraction. Most of these structures showed the precise location of chemically interesting hydrogen atoms. We have also summarized structures where neutron diffraction allowed for the assignment of absolute stereochemistry in deuterated systems. Lastly, we have discussed the usefulness of neutron diffraction in protein crystallography.
One of the major disadvantages of neutron diffraction is the immensely low number of neutron sources available as compared to X‐ray sources. We have detailed the neutron sources around the world capable of neutron diffraction experiments, including sources that are currently under construction such as the Spallation Neutron Source in Oak Ridge, TN and J‐PARC in Tokyo, Japan. In addition, a number of neutron diffraction instruments and their sample requirements are illustrated.
In the past, neutron diffraction has been overlooked by most practicing chemists as an efficient analytical tool. However, with the newer more powerful facilities and instrumentation in development, chemical systems studied with neutrons should become more common.