The past five years have witnessed a revolution in astronomy. The direct detection of gravitational waves (GW) emitted from the binary black hole (BBH) merger GW150914 (Fig. 1) by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) detector 1 on September 14, 2015 (reF. 2 ) was a watershed event, not only in demonstrating that GWs could be directly detected but more fundamentally in revealing new insights into these exotic objects and the Universe itself. On August 17, 2017, the Advanced LIGO and Advanced Virgo 3 detectors jointly detected GW170817, the merger of a binary neutron star (BNS) system 4 , an equally momentous event leading to the observation of electromagnetic (EM) radiation emitted across the entire spectrum through one of the most intense astronomical observing campaigns ever undertaken 5 .Coming nearly 100 years after Albert Einstein first predicted their existence 6 , but doubted that they could ever be measured, the first direct GW detections have undoubtedly opened a new window on the Universe. The scientific insights emerging from these detections have already revolutionized multiple domains of physics and astrophysics, yet, they are 'the tip of the iceberg' , representing only a small fraction of the future potential of GW astronomy. As is the case for the Universe seen through EM waves, different classes of astrophysical sources emit GWs across a broad spectrum ranging over more than 20 orders of magnitude, and require different detectors for the range of frequencies of interest (Fig. 2).In this Roadmap, we present the perspectives of the Gravitational Wave International Committee (GWIC, https://gwic.ligo.org) on the emerging field of GW astronomy and physics in the coming decades. The GWIC was formed in 1997 to facilitate international collaboration and cooperation in the construction, operation and use of the major GW detection facilities worldwide. Its primary goals are: to promote international cooperation in all phases of construction and scientific exploitation of GW detectors, to coordinate and support long-range planning for new instruments or existing instrument upgrades, and to promote the development of GW detection as an astronomical tool, exploiting especially the potential for multi-messenger astrophysics. Our intention in this Roadmap is to present a survey of the science opportunities and to highlight the future detectors that will be needed to realize those opportunities. The recent remarkable discoveries in GW astronomy have spurred the GWIC to re-examine and update the GWIC roadmap originally published a decade ago 7 .We first present an overview of GWs, the methods used to detect them and some scientific highlights from the past five years. Next, we provide a detailed survey