Surface adsorbates and surrounding matrix species have been demonstrated to affect the properties of nanoscale ferroelectrics and nanoscale ferroelectric composites; potentially counteracting performance losses that can occur in small particle sizes. In this work, the effects of nonpolar oleic acid (OA) and polar tetrafluoroborate (BF4−) ligand capping on the surface of various sizes of BaTiO3 nanocubes have been investigated with combined neutron diffraction and neutron pair distribution function (PDF), density functional theory (DFT), and ab initio molecular dynamics (AIMD) methods. The low real space PDF region provides an unobstructed view of rhombohedral (split short and long) Ti−O distances in BaTiO3 nanocubes, mimicking the well‐established order‐disorder local structure found in bulk BaTiO3. Interestingly, the intermediate‐range order in nanocubes is found to be orthorhombic, rather than tetragonal. It is concluded that polar ligands adsorbed at BaTiO3 surfaces stabilize the correlation length scale of local rhombohedral distortions in ferroelectric nanoparticles relative to nonpolar ligands.