A novel analytical solution to the neutron diffusion equation is proposed in this study using the residual power series approach for both spherical and hemispherical fissile material reactors. Various boundary conditions are investigated, including zero flux on the boundary, zero flux on the extrapolated boundary distance, and the radiation boundary condition (RBC). The study also shows how two hemispheres with opposing flat faces interact. We give numerical results for the same energy neutrons diffused in pure P239u. By qualitative comparison with the homotopy perturbation method and Bessel function-based solutions, the residual power series method (RPSM) presents accurate series solutions that converge to the exact solutions, as shown in this study. Moreover, numerical results were shown to be improved by the computer implementation of the analytic solutions.